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Numerical modelling and validation of Marangoni and
surface tension phenomena using the finite volume

method
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SUMMARY

Surface tension induced flow is implemented into a numerical modelling framework and validated for a
number of test cases. Finite volume unstructured mesh techniques are used to discretize the mass,
momentum and energy conservation equations in three dimensions. An explicit approach is used to
include the effect of surface tension forces on the flow profile and final shape of a liquid domain.
Validation of this approach is made against both analytical and experimental data. Finally, the method
is used to model the wetting balance test for solder alloy material, where model predictions are used to
gain a greater insight into this process. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Investigations of thermo-capillary flows with a deforming free surface have been performed
using a number of discretization techniques, such as the spectral method [1], finite volume
method (FVM) [2] and the finite element method (FEM) [3,4]. Each approach aims to include
surface tension forces within a numerical fluid framework to accurately predict the effect of
surface tension on the flow field and the position of the free surface.

Using the spectral method in two dimensions, Ahmed et al. [1] investigated both Marangoni
and buoyancy driven flow for low capillary numbers (Ca). Periodically during the simulation,
the free surface is updated using the normal stress approach, and the mesh is regenerated using
body-fitted co-ordinates. Although comparisons with literature data are encouraging, it should
be noted that extensions to three dimensions using a spectral method, with mesh regeneration
at each free surface update, will be computationally expensive.
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Sasmal et al. [2] adopted the FVM to discretize the Navier–Stokes and temperature
equations in two dimensions. In this approach, a Cartesian mesh was used and the deforming
free surface is modelled using the volume-of-fluid (VOF) algorithm. The attraction of this
approach is that mesh movement is avoided, but surface smearing may result owing to
numerical diffusion.

McClelland [3] used the FEM to discretize the Navier–Stokes and temperature equations in
two dimensions. The free surface is modelled using a kinematic update, where the calculated
surface velocity is used to update its position. The surface tension boundary condition is
integrated by parts to avoid computation of curvature. Good results were obtained, but
spurious oscillations were encountered owing to the explicit nature of the surface tension
source terms.

Slikkerveer et al. [4] solved for Stokes flow in two dimensions using the FEM. A compact
solver was used to solve the flow variables simultaneously. To overcome the observed
numerical instability with regard to the kinematic mesh update, an implicit scheme was
adopted. An important issue raised in this paper, regarding the instability of the free surface,
is the time step required for the kinematic update, which has to be an order smaller then the
minimum time scale for the system. The time scale depends on the square of the wavelength
of the free surface. The wavelength in the numerical problem depends on the mesh size. Thus,
the time step size has to be decreased, as the mesh is refined.

Marangoni and surface phenomena provide an interesting area for investigation both from
the academic and the industrial viewpoints. One industrial application that is governed by this
phenomenon lies in the area of electronic packaging, where solder material melts, reflows and
then solidifies to bond electronic components to printed circuit boards (PCBs). The effect of
surface tension on solder joint formation has received a large amount of attention, specifically
in the initial shape predication of solder joints [5], which have been modelled numerically using
the SURFACE EVOLVER (SE) package [6,7]. These shape predictions have been coupled
with computational mechanics codes to further predict solidification [8] and then residual
stress [8,9] within the solder and its surroundings. In this paper, simulations involving the
wetting balance test are undertaken. The wetting balance test is used to establish the
wettability of electronic component surfaces [10]. Experimental investigations on this test have
shown that the change in solder height is not fully explained by the elastica solution.

In this paper, the geometry is updated at the end of each time step stage with a relaxation
method to improve the stability at the free surface. This paper contributes to the modelling of
surface tension dominated process by

� representing of the governing conservation equations, including surface tension in a
three-dimensional finite volume framework;

� discretization of the surface tension boundary condition as a line integral as opposed to a
surface integral;

� investigation into stability of the free surface.

This method is validated against both analytical solutions and used to gain an insight into
forces acting in the wetting balance test.
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2. GOVERNING EQUATIONS

The governing equations described here as the momentum and mass conservation equations in
three dimensions with heat transfer. Also described is the surface tension boundary condition
deriving the weak form, from the strong form using finite volume methodology. Generally,
between two different fluids there exists a film that may have a surface tension associated with
it that can be represented as normal and tangential forces. Typically, one of the fluids will have
a negligible effect on the film. A tangential force will be present if the surface tension differs
along the free surface. This is the force that acts as a boundary condition to induce Marangoni
flow. The surface tension difference along an interface may be caused by a number of factors
including temperature or concentration gradients. The surface tension, gi, may be a function of
these quantities, such that

g=g(T(r6 ), Si(r6 )) (1)

where T(r6 ) is temperature as a function of position r6 , and Si(r6 ) is a proportion of a chemical
species. A normal force will be present wherever surface tension exists unless the curvature of
the surface vanishes.

2.1. Mass conser6ation

The equation for mass conservation, using tensor notation, is

&
V

(r

(t
dV+

&
(V

niuir d((V)=0, i=x, y, z (2)

where V is an arbitrary volume, r is the density, t is the time, ui is the velocity and ni is the
normal to the free surface, and (V is the surface of the volume.

2.2. Momentum conser6ation

The governing equation for conservation of momentum is
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njujrui d((V)=
&
(V

sijnj d((V)+Sui
, i=x, y, z (3)

where Sui
are the source terms and sij is the fluid stress tensor.

2.3. Enthalpy con6ersation

The equation of enthalpy conservation [11–13] for an incompressible low-velocity flow with
negligible viscous dissipation is
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where h is the reduced enthalpy, c is the specific heat and k is the thermal conductivity. The
reduced enthalpy is related to temperature, T, via

h=cT (5)

2.4. Surface tension boundary condition

The surface tension boundary condition is presented in three dimensions for a thin film
between two fluids where one of the fluids has negligible influence [14], such that

nisijnj= −pa+Jg (6)

tisijnj= tj

(g

(xj

(7)

and

misijnj=mj

(g

(xj

(8)

The vectors ti and mi=oijknktj are unit tangents to the surface, J is the first curvature of the
surface and pa is the external pressure. Equation (6) is the normal boundary condition and
Equations (7) and (8) are the tangential boundary conditions. An alternative representation
[15] is

sijnj=Jgni−pani+ (dij−ninj)
(g

(xj

, i=x, y, z (9)

Equations (6)–(8) can be seen by dot multiplying Equation (9) by ni, ti and mi respectively.
Equations (6)–(9) are the strong forms of the boundary condition. It is necessary, for the
FVM, to derive the weak form of the boundary condition. The following result is useful for
this derivation:

&
S

9Sf dS=
7
(S

m6 f d((S)−
&

S

Jfn6 dS (10)

where

9Si
= (dij−ninj)

(

(xj

(11)

The vector mi is the unit tangent to the surface, but normal to the boundary enclosing the
surface. Equation (10) is the divergence theorem on a curved surface, for a function f defined
on the surface S, differing from the result for a flat surface due to the extra curvature integral,
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Weatherburn [16], p. 240. To derive the weak form of the boundary condition, Equation (9)
is integrated over a portion of the surface to give

&
S

sijnj dS=
&

S

Jgni dS−
&

S

pani dS+
&

S

(dij−ninj)
(g

(xj

dS (12)

By applying the divergence theorem given in Equation (10) to the last term in Equation (12),
the curvature cancels to leave

&
S

sijnj dS= −
&

S

pani dS+
7
(S

mig d((S) (13)

Equation (13) is a useful representation for the FVM. The last term in Equation (13) can be
seen from first principles since it is just the magnitude and direction of the force due to surface
tension summed around the edge of the surface S. The general finite element equivalent
employing a test function f is [4]

&
S

sijnjf dS= −
&

S

panif dS−
&

S

g(dij−ninj)
(f

(xj

dS+
7
(S

fmig d((S) (14)

Implementation of Equation (13) into the discretized momentum equation in a computational
fluid dynamics (CFD) framework is simpler than that of Equation (4) owing to the removal of
the second term on the right-hand side of Equation (14). Thus, the requirement of computing
an extra term over a piecewise surface is overcome by using the FVM, although a tangent
vector mi must still be interpolated between adjacent facets on the free surface.

3. MODELLING FRAMEWORK

PHYSICA [17] is a numerical framework for the modelling of physical phenomena where
materials may exhibit solid and/or fluid behaviour during their processing. A range of
interacting solution procedures for turbulent flow, heat transfer with solidification/melting and
elasto-visco-plastic solid mechanics are included. This code has been used extensively to model
a number of industrial processes [18,19]. A cell-centred FVM [20] using the SIMPLE [12]
procedure is employed to solve the mass, momentum and energy equations [where the control
volume (CV) corresponds to the mesh element]. Dependent variables such as temperature,
pressure and velocity components are stored at the centre of the CV. Pressure–velocity
decoupling is avoided by the use of Rhie–Chow interpolation. For a free surface a constant
pressure boundary condition is used. The solution procedure for the mass and momentum
equation is outlined below.

1. Guess an initial pressure and velocity field.
2. Solve for new velocities using the discretized momentum equation.
3. Solve the pressure correction equation.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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4. Calculate the velocity corrections using the pressure corrections.
5. Update the velocity and pressure fields using the corresponding corrections.
6. If convergence criteria not satisfied, return to 2 using new velocity and pressure field as the

guessed values.

A complete solution procedure can be seen in Figure 3. In this analysis, the Laplace
equation is used to adjust the mesh where the CVs are built up around the vertices. This is the
vertex based [21] approach to the FVM, where dependent variables such as displacements are
located at mesh vertices as illustrated in Figure 1.

Figure 1. FVM for an unstructured mesh: (a) vertex-based, (b) cell-centred; V represents a CV.

Figure 2. CV diagram.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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3.1. Discretization

The right-hand side of Equation (13) must be approximated around the boundary of each
element face that has surface tension. This produces a source term for the momentum
equations on elements that are adjacent to the free surface. Surface tension is evaluated at
every edge, using a linear interpolation for temperature between two neighbouring cell centres
as illustrated in Figure 2. Equation (13) is discretized as follows:

−
&

S

pani dS+
7
(S

mig d((S)= −pa(niA)f+%
e

(migl)e (15)

where the summation is over all the edges e of the surface of an element, which lies adjacent
to the interface; the length of the edge is le, and Af is the area of the face. The surface tension
at an edge is evaluated via ge=g(Te). The temperature at the edge Te is approximated using

Te=aeTP+ (1−ae)TA (16)

where

ae=
dAe

dAe+deP

(17)

dAe is the distance from the adjacent element centre to the edge centre. The temperature in an
element E is represented by TE. The tangent mie at the edge between two faces must be
approximated and to ensure conservation, the value of mie due to one face must be equal and
opposite on any adjacent surface face, therefore

miep=oijkniPtjeP (18)

where tjeP is the tangent vector to the face of the element associated with the edge (i.e. it is the
unit vector along the edge in the direction due to the right hand rule) and nip is the normal of
the face pointing out of the element. So mie can be expressed by

mie=
mieP−mieA

2
(19)

During the solution procedure, the fluid motion due to Marangoni and buoyancy forces
updates the boundary of the domain using a mixed Lagrangian approximation. The velocity at
the surface nodes that are calculated from the face fluxes is then used to update the free surface
position. Internal nodes are then moved to keep a satisfactory mesh definition, which must be
reflected in the transient and convection terms of the general equation to preserve the
dependent variable [22]. The discretization of the continuity equation (2) must include volume
changes in the control volume where
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Figure 3. Solution procedure.
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& t
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niuir d((V) dt=0 (20)

and discretized in the following manner:

VPrP−VP
0 rP

0 +%
f

rf((ui−uiM)ni)fAfDt=0 (21)

where Dt is the time step size, VP is the volume of the element, VP
0 is the volume of the element

at the previous time step, and uiM is the mesh velocity. For the case of constant density,
Equation (21) becomes

%
f

(uini)fAf=0 (22)

If the momentum equation (3) above is integrated in a similar manner to Equation (20), the
discretization of the left-hand side is

VPrPuiP−VP
0 rP

0 uiP
0 +%

f

rf((uj−ujM)nj)fAfuifDt (23)

3.2. Dynamic mesh deformation

The mesh face velocity is calculated via

uiM=
ri−r i

0

Dt
(24)

where ri is the current face centre and r i
ois the old face centre. uiM must be updated after each

time step. The surface grid velocity is required and is calculated via

uiG=
%
f

ui f

nf

(25)

where uiG is evaluated over all adjacent free surface faces, nf is the number and uif is the
velocity normal to each of these faces. The velocities uif are calculated from the face fluxes such
that

uif=
Ffni

rfAf

(26)

where Ff is the face flux. The surface grid velocities, located at mesh vertices, are calculated at
each time step. These values can be used as displacement boundary conditions dxiG=uiGDt to
deform the mesh. An equilibrium calculation [21,22] is used to deform the internal governed by
the following equation:
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(2di

(xi (xj

=0 (27)

where di is the displacement field with

di=dxi (28)

at the boundary. Equations (27) and (28) are discretized using the vertex based FVM. The
internal nodes are displaced avoiding any change in topology using the solution procedure in
Figure 3. Relaxation of the mesh movement was included on the surface by using the previous
time step displacement, which prevents instabilities that can occur owing to using a first-order
scheme in time for Equation (15). The surface displacement with the relaxation can be written

dx= (1−a)dxG+adx0 (29)

where dx0 is dx evaluated at the previous time step and a is the relaxation value.

4. NUMERICAL EXAMPLES

The algorithms described above are validated against four separate test cases. The first two test
cases are closed form solutions derived using lubrication theory to approximate the steady
incompressible flow field at small Marangoni numbers. However, the numerical solution is not
restricted to small Marangoni number. The last two test cases model the wetting balance test
in both two and three dimensions [10]. The aims of the validation cases are

� Case 1: validate Marangoni flow with a fixed flat free surface due to a temperature
gradient.

� Case 2: validate Marangoni flow for a fixed curved surface and investigate the effects of
temperature interpolation from the cell centres.

� Case 3: validate static free surface position and the effect of Marangoni flow. Investigate
the effect of buoyancy and combined buoyancy–Marangoni flow.

� Case 4: validate static free surface position in three dimensions. Investigate the effect of
Marangoni flow.

4.1. Case 1: thermo-capillary motion of a liquid with a free surface, with non-linear
dependence of the surface tension on the temperature

In this example [23], the surface tension g has a quadratic dependence on temperature,

g=g0+
1
2

a(T−T0)2 (30)

on the upper surface of the domain, while the bottom surface has a surface temperature
boundary condition T=T0+Ax, where A is a constant. The similarity solution can be found
for small Marangoni number, defined by

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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Mh=
rH3aA2

m2 (31)

where m is viscosity and H is the height of the cavity. All the constants in Equation (31) were
set at unity apart from H. Three meshes are used to model this problem using 700 (7×100),
1650 (11×150), and 3000 (15×200) elements. The 3000 elements mesh can be seen in Figure
4 and the velocity vectors are plotted in Figure 5. The length of the rectangular cavity was set
at 10 and the height H=0.4. Figures 6–8 show the percentage difference between the
numerical and the analytical solutions, illustrated in Figure 9 for different mesh densities. The
plots show that all mesh densities come within a 10 per cent difference of the closed form
solution, the first mesh is within a 2 per cent difference and as the mesh is refined the
difference decreases. The given closed form solution is for a domain of infinite extent. The
numerical domain had to be of a finite extent so the limit of x=10 was chosen, which
simulates an infinite extent for the region away from x=10. In Figure 6, the error is seen to
increase at x=10; this is due to the numerical solution not modelling the closed form solution
at this point. This does not effect the solution in the region of concern near x=0. These results
validate the above finite volume framework, where surface tension effects are included and the
interface remains flat.

Figure 4. The 3000 element mesh used for the simulation.

Figure 5. The velocity vectors for the 3000 element mesh

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047



D. WHEELER, C. BAILEY AND M. CROSS1032

Figure 6. Per cent difference for the x velocity in the x-direction at y=0.387.

Figure 7. Per cent difference for (a) x velocity and (b) y velocity in the y-direction at x=0.257.

4.2. Case 2: non-isothermal spreading of liquid drops on horizontal plates

Erhard and Davis [24] found closed form solutions for a two-dimensional liquid drop when the
free surface had reached equilibrium at small Marangoni number Mc, and small contact angle
u. The surface tension was allowed to vary linearly with temperature and is given by

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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Figure 8. Per cent difference for (a) temperature and (b) pressure in the x-direction at y=0.2.

Figure 9. The (a) x velocity and (b) y velocity in the y direction at x=0.257.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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Figure 10. 180×9 element mesh used for the simulation.

Figure 11. Sections for the 180×9 element mesh of (a) velocity vectors at x=0.66 showing the region
where the mesh aspect ratio doubles; (b) small aspect ratio elements near the corner of the mesh, which
lead to inaccuracies in this region; (c) velocity vectors at x=0, where the solution is the most accurate;

(d) temperature in cavity.

g=gw−g0(T−Tw) (32)

where Tw is the fixed temperature along the bottom surface. In this simualtion, u=0.1 and
Mc=0.01. Again a number of mesh densities were used, 180×9, 140×4, 100×5 and 60×3
elements. The largest mesh can be seen in Figures 10 and 11. The velocity vectors are
illustrated in Figure 11(a) and (c). Figure 11(d) shows the temperature in a section of the drop.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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In this test case, the free surface position is calculated from the analytical solution and imposed
on the mesh. A further case was studied using the analytical temperature field, eradicating any
spurious errors owing to temperature extrapolation from the cell centres to the nodes. Figures
12–15 show plots of the per cent difference between the analytical and numerical results. For
the finest mesh, the difference is less than 10 per cent for each variable. In each plot there is
(a) a clear loss of accuracy owing to the temperature extrapolation from the cell centres to the
free surface nodal points, and (b) an improvement in accuracy as the mesh is refined in all
cases. In Figure 12 there is a spike in the region where the mesh experiences a sudden
refinement at x=2

3. The tangential temperature extrapolation becomes inaccurate at this point
because the grid node no longer lies equi-distance between the cell centres. This is confirmed
by the use of the prescribed temperature, which eradicates the spike. In Figures 13 and 14(a)

Figure 12. Per cent difference for the x velocity in the x-direction for z=8.5h/9.

Figure 13. Per cent difference for the z velocity in the x-direction for z=h/2.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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Figure 14. Per cent difference for (a) pressure and (b) temperature in the x-direction at z=h/2.

Figure 15. Pre cent difference for (a) x velocity and (b) z velocity in the z-direction at x=0.1.

there is a loss of accuracy due to the small height in this region leading to large aspect ratio
elements, which can be seen in Figure 11(b). All the meshes used here were coarse but
sufficient to indicate a convergence to the analytical result. These results validate the algorithm
for an interface that has changing curvature.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047



MODELLING AND VALIDATION OF MARANGONI AND SURFACE TENSION PHENOMENA 1037

4.3. Case 3: simulation of the wetting balance test in two dimensions

The simulation was attempted to identify the dominant force effecting, and to accurately
predict, meniscus height rise in the wetting balance test building on earlier experimental work
by Moon et al. [10]. The experimental work examined oil and solder at different temperatures,
measuring the force, angle and height rise at the contact triple point in each case. The height
measured in the experiment could not be accounted for by standard static equilibrium theory.
It was conjectured that resultant steady state flow may be occurring due to temperature
variations in the fluid, which may affect the equilibrium free surface position. The problem was
modelled in two dimensions with the solder bath domain represented by a 1×0.5 cm2

rectangle, and a contact angle of 45° at the triple point, as shown in Figure 16. The material
properties for oil and solider are listed in Table I.

The physical system can be characterized by various dimensionless parameters, beginning
with the static bond number given by

B0=
r0gH2

g0

(33)

Figure 16. Wetting balance boundary conditions.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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Table I. Material properties for solder and oil.

Oil SolderMaterial property Unit

10 10 m s−2g
0.0208 0.4g J m−2

963.0 8000 kg m−3r
0.048 0.0022m kg m−1 s−1

−0.000065 −0.000053a J m−2 K
−0.9 −0.12b kg m−3 K

14.0E+01 5.0E+01 kg m s−3 Kk
20.0E+02 1.5E+02 m2 s−2 Kc

the Marangoni number given by

Ma=
r0aHDTc

mk
(34)

the Capillary number given by

Ca=
aDT

g0

(35)

the Rayleigh number given by

Ra=
H3r0

2cbDTg
km

(36)

the Prandtl number given by

Pr=
mc
k

(37)

and, lastly, the dynamic bond number given by

Bod=
Ra
Ma

(38)

In these expressions, H is the height of the cavity, g is the acceleration due to gravity, g0 is the
reference surface tension, r0 is the reference density, a is the rate of change of surface tension
with temperature, DT is the change in temperature over the domain and b is the thermal
expansion coefficient. Ma and Ra were chosen to depend on the viscous time scales and the
thermal time scales [25]. Surface tension is given by

g=g0+a(T−T0) (39)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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and the density for the Boussinesq approximation is given by

r=r0+r0b(T−T0) (40)

The values of the dimensionless parameters are given in Table II. The value of Bod is greater
than unity in both cases indicating that buoyancy forces are important. Ca is small for solder
indicating that the surface will be governed more by surface tension forces and less affected by
Marangoni convection. Bo is large in both cases, indicating that the gravitational field will
dominate the surface shape.

The first simulations show model predications when convection is neglected. These are
compared with elastica calculations and validate mesh movement. The equilibrium position
when no conversion is presented is given from static theory, and is used to validate the steady
state surface position. Meshes of 11×5, 21×10 and 41×20 elements are employed. The
difference between the static equilibrium and the numerical steady state solution is given as a
percentage error in Figures 17 and 18. For both oil and solder the error is less than 2 per cent
for the finest mesh and the error decreases as the mesh is refined.

When residual convection is present a change in the equilibrium free surface position can be
seen (Figures 19 and 20). In oil at 100°C the triple point rises when Marangoni convection is
included but falls for buoyancy convection (Table III). In Figure 21 the flow regimes and the
temperature contours can be seen for Marangoni and buoyancy convection. The velocity
magnitudes are considerably lower for buoyancy induced flow as opposed to Marangoni
induced flow. The Marangoni induced flow creates a larger temperature gradient near the
triple point then the buoyancy induced flow (Figure 21). In the case of buoyancy flow, the

Table II. Dimensionless parameters.

SolderOilParameter

511.57Bo
115.64Ca 6.98
529.53Ra 23.29

0.0060.69Pr
4.58Bod 3.34

Table III. Height rise for oil at 100°C.

SimulationOil 100°C Experiment

u 45.0 3.4
dT/dx 7.5
Static (elastica value) 0.958 1.90
Marangoni 1.280
Buoyancy 0.885

1.019Buoyancy and Marangoni
Experimental 2.5

3234Per cent rise (Marangoni)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1021–1047
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Figure 17. Per cent error in static free surface position for oil.

Figure 18. Per cent error in static free surface position for solder.

dependence of surface tension on temperature has been removed, so the surface tension takes
a fixed value. This may cause differences between the Marangoni induced and the buoyancy
induced flow free surface profiles. The surface tension decreases away from the triple point in
the case of Marangoni flow due to a negative dependence on temperature, which causes a
height rise. A recirculation is occurring for buoyancy induced flow near the triple point, which
may also effect the height. The static height in the experimental column of Tables III, IV and
V is computed using the experimental value of the contact angle and force using the elastica
solution. In all cases it does not agree with the experimental height prediction. Experimental
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results in Table III agree with the Marangoni convection but not with the combined
buoyancy–Marangoni convection. The 32 per cent height rise for the experiment agrees well
with the 34 per cent height rise for the simulation. Thus, the buoyancy effects may be
overstated in these simulations or another physical process may be influencing the experiment.
In oil at 50°C, the same effect is found for Marangoni convection agreeing with experiment
results by Moon et al. (Table IV).

For solder, the interface change can be seen in Figure 20. Combined buoyancy–Marangoni
convection gives the largest height rise. Marangoni and buoyancy driven convection also result
in height rises. The low value of Ca allows relatively small movement of the surface for solder

Figure 19. Per cent change in the free surface height caused by different flow regimes in oil.

Figure 20. Per cent change in the free surface height caused by different flow regimes in solder.
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Figure 21. Various steady flow regimes for oil.

compared with oil. The flow pattern has less influence on the temperature field owing to a
lower value of Pr. The 10 and 15 per cent height rise for the simulation and experiment
respectively in Table V, agree well, indicating that buoyancy–Marangoni combined convection
may explain the results found in the experiment.

4.4. Case 4: simulation of the wetting balance test in three dimensions

To test the three-dimensional implementations of this method, the wetting balance is again
modelled. A simulation in three dimensions was attempted to validate the static free surface
position and the trends due to Marangoni convection. Equation (29) was used to improve the
stability allowing larger time steps. Figure 22(a) shows a comparison of the displacement of the
contact point with time, for relaxation of a=0.5 and a=0.0. The dynamics are only effected
by a small amount when the relaxation is present, thus a=0.5 for this simulation. The wetting
balance simulation presented here is for a rectangular pin in a circuit oil bath. The radius of
the bath is 5 cm and the depth is 5 cm. The square pin measures 10×5 mm2. The static
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Table IV. Height rise for oil at 50°C.

Simulation ExperimentOil 50°C

40.1 21.9u
dT/dx 17.5

1.043 1.72Static (elastica value)
1.381Marangoni

Buoyancy
Buoyancy and Marangoni
Experimental 1.92

32Per cent rise (Marangoni) 12

Table V. Height rise of solder.

Simulation ExperimentSolder

45.0 41u
4.0dT/dx
6.202 (1.482)Static 1.55

Marangoni 6.258 (1.520)
6.229 (1.498)Buoyancy

Buoyancy and Marangoni 6.280 (1.627)
Experimental 1.79

10Per cent rise (B–M) 15

equilibrium shape is compared with the SE prediction in Figure 22(b) for mesh densities of 15,
29 and 49 elements along the free surface. The mesh density is course in these simulations due
to the time step limit an explicit scheme imposes. Errors of less than 2 per cent are achieved
for all three mesh densities. Wedge elements were used throughout the mesh, which can be seen
in Figure 23. The temperature field, resultant velocity field and velocity cross-section can be
seen in Figures 24–26 respectively. This simulation demonstrates the ability of this method to
simulate three-dimensional surface tension problems using unstructured meshes. The free
surface shape compares well with Surface Evolver predictions.

5. CONCLUSION

The surface tension boundary condition has been implemented in a finite volume framework
using a novel approach on three-dimensional unstructured meshes. The numerical method has
been tested against several closed form solutions for Maragoni flow. A fixed-Lagrangian
approach with a kinematic update has been used to capture the deformation of the free
surface. The resulting steady state solutions compare well with the elastic solution. Finally, the
method has been used to provide insight into the wetting balance test, predicting how natural
and Marangoni convection affect the free surface. It was found that Marangoni convection
predicted the correct height rise in the case of oil, but including buoyancy flow resulted in a
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Figure 22. (a) Contact point displacements for (1) a=0.5 (dashed), and (2) a=0.0 (solid). (b) Per cent
error in the static equilibrium free surface height for 15, 29 and 49 elements.

Figure 23. Mesh used for the simulation showing final deformation.
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decrease in the height of the triple point. This indicates that the temperature assumed in this
analysis is possibly too large. For the case of solder, the combined buoyancy–Marangoni
convection showed an increase in the height. This may explain the height rise found in the
experiments. Furthermore, three-dimensional predictions were validated against static Surface
Evolver predictions, and Marangoni convection also showed a height increase in the case of
oil.

Instability in mesh movement required small time steps for the materials considered here and
numerical damping in the case of solder. Improvements have been made by using the previous
time step displacement combined with the current time step displacement. This acts to dampen
any instability while preserving the dynamics of the system. Using this method time steps of an
order of magnitude greater were used, saving on run times. A fully implicit boundary condition
needs to be developed for the finite volume framework and will form the basis of further work.
This may overcome some of the stability problems encountered here.

With regard to the modelling of complex industrial processes, predicting surface tension
phenomena is extremely useful when coupled with other physical behaviour, such as phase
change, associated heat transfer, and solid mechanics. This can be achieved within the
numerical framework PHYSICA. Further work will include simulations for solder wetting
with solidification and implementation of an implicit formulation for the surface tension
boundary condition.

Figure 24. Temperature field in the oil.
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Figure 25. Velocity magnitude in the oil.

Figure 26. Cross-section through domain showing velocity vectors due to Marangoni flow.
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